

 Page 1 of 46 “Rational Support Whitepaper”

Custom Domain Modeling with UML Profiles

The Basics of Generating Tooling for Elements from a UML Profile

Wayne Diu

February 13, 2009

 Page 2 of 46 “Rational Support Whitepaper”

INTRODUCTION .. 4

PREREQUISITES ... 4

MODELING IN A SPECIFIC DOMAIN ... 4

EXTENDING UML WITH PROFILES ... 5

WHAT’S NEW IN 7.5 ... 5

BEFORE YOU START .. 6

THE PROFILE TOOLING WIZARD .. 8

1.1 STARTING THE PROFILE TOOLING WIZARD .. 8
1.2 CHOOSING A PROFILE ... 9
1.3 BASIC TOOLING OPTIONS ... 10

1.3.1 When the tooling model should not be generated 10
1.3.2 When the tooling code should not be generated ... 10

1.4 ADVANCED TOOLING OPTIONS.. 10
1.4.1 General Tab .. 10
1.4.2 Elements Tab ... 11
1.4.3 Shapes Tab ... 13

2 THE GENERATED PLUG-IN .. 14

3 THE TOOLING MODEL .. 15

CUSTOMIZING THE TOOLING ... 17

3.1 THE TOOLING MODEL ... 17
3.2 THE CLASS STEREOTYPED AS PROFILE - .. 18
3.3 THE CLASS STEREOTYPED AS PATHMAP - .. 18
3.4 CLASS STEREOTYPED AS ACTIVITY - ... 18
3.5 ELEMENT TYPES PACKAGE ... 19
3.6 MENUS PACKAGE ... 19
3.7 PALETTES PACKAGE ... 21
3.8 SHAPES ... 22

3.8.1 Using default UML notation .. 22
3.8.2 Generating custom shapes ... 24

3.9 PROPERTIES ... 26

4 WIZARDS .. 27

5 DYNAMIC PROFILE TOOLING DIAGRAMS .. 28

6 CHANGE MANAGEMENT .. 29

6.1 RESPONDING TO CHANGES IN THE PROFILE .. 29
6.2 UPDATING TOOLING MODEL GENERATION PROPERTIES .. 30
6.3 GENERATING CODE FROM THE TOOLING MODEL ... 31

7 RUNNING THE GENERATED PLUG-IN ... 33

 Page 3 of 46 “Rational Support Whitepaper”

7.1 LAUNCHING A NEW INSTANCE OF THE RUNTIME WORKBENCH ... 33
7.2 THE NEW MODEL WIZARD ... 34
7.3 ENABLING ADDITIONAL CAPABILITIES ... 36
7.4 WORKING WITH EXISTING MODELS ... 37

8 DEPLOYING THE TOOLING ... 39

8.1 DEPLOYING TOOLING THE EASY WAY ... 39
8.2 DEPLOYING TOOLING AS A JAR FILE ... 39

8.2.1 Importing the JAR .. 40
8.2.2 Including the JAR in the plugins directory .. 40

8.3 DEPLOYING TOOLING USING AN UPDATE SITE ... 42

9 UPGRADING FROM EARLIER VERSIONS ... 44

10 CONCLUSION .. 45

11 ACKNOWLEDGEMENTS .. 46

12 ABOUT THE AUTHOR .. 46

13 RESOURCES ... 46

 Page 4 of 46 “Rational Support Whitepaper”

Introduction
This article guides you through the basics of generating tooling for elements from

an existing UML profile or from a new UML profile. The steps described in this

article pertain to Rational Software Architect for WebSphere Software 7.5,

Rational Software Architect Standard Edition 7.5 and Rational Software Modeler

7.5.

Prerequisites
If you have a basic understanding of Eclipse and UML modeling, you should be

able to generate and deploy your own custom tooling. To be able to customize

the tooling, you will need a working knowledge of developing UML models. A high

level understanding of Graphical Modeling Framework (GMF) is beneficial but not

required. For advanced users who wish to perform major customizations,

knowledge of Java™ technology, GMF, and Eclipse plug-in development is

required.

Modeling in a specific domain
First, what is the point of Profile Tooling? It enables you to act as a toolsmith, a

person who creates tools. Profile Tooling generates tooling for a particular

domain, starting from an existing UML profile. By tooling, we are referring to a

custom diagram editor that contains custom palette entries, menus items, wizard

templates, property sheets, and even custom shapes. The generated tooling can

be deployed to end users, known as domain modelers. Using the generated

tooling, the domain modelers are able to model elements in their specific domain,

using the notation specific to their domain.

 Page 5 of 46 “Rational Support Whitepaper”

Extending UML with profiles
Take, for example, an airline company with a system used by customer service

representatives as a result of customer interactions. This system includes the

ability to perform queries on flights and availabilities, create reservations, and –

yes – even handle complaints about lost luggage or other matters (after being

transferred to a separate representative, of course). A corresponding UML profile

might contain various stereotypes with metaclass extensions to Actor for the

various people involved (customer, booking agent, luggage agent), stereotypes

with metaclass extensions to Use Case for various actions (standard reservations,

redeeming loyalty points, lost luggage reports and queries), and stereotypes for

other items in the system (e.g. queries, e-tickets, or complaints). The person

responsible for modeling such a system may not be familiar with UML. However,

they are familiar with the concepts the system entails, and assuming the profile is

reasonably complete, these concepts are represented by the profile elements.

You will learn how to use the new Profile Tooling workflow introduced in Rational

Software Architect and Rational Software Modeler 7.5 and later, including:

 generating the tooling model;

 how to customize the tooling model;

 creating dynamic tooling diagrams;

 generating code from the tooling model;

 deploying the tooling;

 updating the tooling model to respond to changes in the profile; and

 upgrading from previous versions.

Because Java code will be generated, you will be able to modify the code to

customize various aspects, such as custom shapes. The generated code is

consistent with standard GMF and UML Modeler API conventions. For more

details on customization of the generated code, see the Resources section for

links to GMF and Modeler API documentation.

What’s new in 7.5
The workflow for Profile Tooling has been updated, from the way the tooling

project is generated to the way the tooling model is customized. Here are some

of the highlights:

 the Profile Tooling Wizard is now invoked through the Eclipse New Project

wizards;

 a UML model is generated instead of GMF models;

 the code generation parameters are customized by editing the UML model;

 updates to the model to respond to changes are now handled through

visual merge;

 additional code is generated to support customizing properties and

wizards; and

 various other code generation settings have been introduced to allow more

flexibility.

 Page 6 of 46 “Rational Support Whitepaper”

Before you start
Before beginning to work with Profile Tooling, be sure that you have installed the

Modeling Extensibility option using the Installation Manager.

Figure. Installing the Modeling Extensibility option.

 Page 7 of 46 “Rational Support Whitepaper”

If your profile contains non-ASCII characters, or if you anticipate that you will be

using non-ASCII characters anywhere in the tooling, be sure that the workspace

preferences are set to UTF-8 encoding. You can do this by selecting Window,

Preferences, General, Workspace, and choosing UTF-8 as the Text file

encoding (see Figure). Otherwise, the Java files that are generated will not

compile properly.

Figure. Setting the text file encoding.

 Page 8 of 46 “Rational Support Whitepaper”

The Profile Tooling Wizard
Profile Tooling was first introduced in version 7.0.5 of the product. Those familiar

with the earlier release will recall starting off with a UML profile, right clicking on

it, and choosing Generate Profile Tooling…. After running through the wizard,

your tooling plug-in would be generated. In version 7.5, the starting point is

from the Eclipse New wizards.

Figure. Invoking the Profile Tooling Wizard from the Eclipse New wizards.

1.1 Starting the Profile Tooling Wizard

Here’s how to start using the Profile Tooling Wizard.

1. Choose File, New, Project….

2. Expand the Modeling category and expand the UML Extensibility

subcategory.

3. From there, choose Profile Tooling Plug-in Project and press Next.

4. Give your project a meaningful name and press Next.

5. Review the contents of the subsequent Plug-in Content wizard page

(there is no need to change anything), and press Next again.

 Page 9 of 46 “Rational Support Whitepaper”

6. Now from the list of available templates, select Profile Tooling Plug-in

Project. The Next button will become enabled. Press Next again, and

now we are able to configure the options specific to profile tooling.

Tip: Alternatively, you may choose Plug-in Project from the Plug-in

Development category, then go through all of the steps and pick Profile

Tooling Plug-in Project at the last step.

1.2 Choosing a profile

If you have used a previous version of the Profile Tooling Wizard, one of the first

things you’ll notice is that you are no longer limited to choosing a profile from the

workspace. In 7.5, if you press the Browse… button, you will find that in

addition to being able to select a profile from the workspace, you can use a

deployed profile or browse to an .epx profile outside of the workspace.

Alternatively, you can even create a new profile by pressing the New… button.

Figure. Selecting a profile.

Note: Although the Profile Tooling Wizard supports generating tooling from

unreleased profiles, you will receive a warning. If you are generating tooling for

your own model and, especially, if it will be deployed to other domain modelers,

you are strongly advised to release your profile first. Compatibility between

unreleased profiles is not guaranteed. To release your profile: Bring up the

context menu of the profile in the Project Explorer and choose Release.

The profiles shipped with the Rational modeling products have been released. If

you do not have a well-developed profile available, you can follow along by

choosing one of the deployed profiles in the dialog.

 Page 10 of 46 “Rational Support Whitepaper”

1.3 Basic tooling options

The Post-project creation options group contains the following two options:

Generate tooling model and Generate tooling code.

 Generate a tooling model generates a UML model, that is an emx file,

which describes how the code will be generated. We will learn how to

customize this model later.

 Generate tooling code actually generates the code based on the

parameters specified in the tooling model. Thus, if the option to generate

the tooling model is not checked, this option will logically not be available.

The above options allow you to choose what the generated plug-in will contain.

In certain scenarios, you do not need to generate the tooling model and the

tooling code.

1.3.1 When the tooling model should not be generated

If you choose an existing profile in your workspace or in the file system, you have

the option of not generating the tooling model. This is useful if you simply want

to deploy your profile in a plug-in. Without this wizard, you would have to create

the plug-in and manually copy the profile into the new plug-in. Then you would

have to add the dependencies in the plug-in manifest and manually write the

code to register the profile. With this wizard, it becomes a lot simpler. You can

run through the wizard, select the profile to deploy, and all of the necessary steps

will be done automatically.

1.3.2 When the tooling code should not be generated

Since code is generated based on the parameters specified in the tooling model,

you may wish to tweak the model first before generating the code. This is why

you may not want to immediately generate tooling code.

1.4 Advanced tooling options

Selecting the Advanced button in the New Profile Tooling Plug-in Project

wizard brings up the Advanced Tooling Model Generation Properties dialog.

From here, you can specify the type of tooling to be generated, which elements

are to be considered from the profile, and whether custom shapes should be

generated.

1.4.1 General Tab

The general tab allows you to define the type of tooling to be generated.

 Menus and Palettes: Selecting these options will create custom

contributions to add items corresponding to your profile elements to the

Add submenu and to the diagram palette. The Add submenu appears

alongside the usual location of the Add UML submenu in the context

menu of the diagram surface.

 Properties: Custom property sheets are shown in the Properties view

for supported elements.

 Wizards: Adds custom templates to the New Model Wizard.

 Page 11 of 46 “Rational Support Whitepaper”

Figure. The General tab.

1.4.2 Elements Tab

The elements in this list correspond to the Stereotypes, Stereotype Associations,

and Metaclass Associations defined in the selected profile. If you check the

checkbox next to an element, the corresponding tooling specified in the General

tab will be generated.

 The table contains one element per stereotype association and one

element per metaclass association. The elements corresponding to

stereotypes are added to the table subject to these rules:

 An element corresponding to the stereotype will not be in the table if a

metaclass extension is not defined for it;

 If the metaclass extension is to a concrete subtype, one element will be

added. For example, if a stereotype named Person extends the UML Actor

metaclass, there will be one element in the list corresponding to it

(<Person> Actor); AND

 One element per concrete subtype of the metaclass extension will be

added. For example, if a stereotype named Requires extends the UML

Dependency metaclass, in addition to an element for <Requires>

Dependency, all its concrete subtypes will appear in the table: <Requires>

Realization, <Requires> Substitution, <Requires> Manifestation,

<Requires> Usage, etc.

 Page 12 of 46 “Rational Support Whitepaper”

 An element corresponding to the stereotype will not appear in the table if

a metaclass extension to an abstract metaclass is defined for it. However,

an element for each concrete subclass of the metaclass extension’s

metaclass will be added. For example, an element corresponding to the

Classifier metaclass will not appear in the table. Even outside the realm of

profile tooling it does not make sense to create Classifier on the diagram

surface, although it would be valid to create Class or Interface, which are

concrete subtypes of the abstract metaclass Classifier. In this case, the

table shows all the concrete subclasses of Classifier – those are the classes

where it does make sense to generate tooling.

Figure. The Elements tab.

Select All and Deselect All are obvious, but Select Profile Types requires

some explanation. Select Profile Types selects elements that directly

correspond to the metaclass extensions of the stereotypes in the profile.

Elements corresponding to subtypes added by the wizard (but not part of the

original profile) are not selected.

As an example, suppose your profile contained three stereotypes, ToActor,

ToUseCase, and ToClassifier. The first one has a metaclass extension of Actor,

the second one has a metaclass extension to Use Case, and the third has a

metaclass extension to Classifier. According to the UML spec, Classifier is an

abstract type – Select Profile Types will select the Actor stereotyped as ToActor

and the UseCase stereotyped as ToUseCase, as those were explicitly defined in

the profile. It would not select the concrete subtypes of Classifier displayed in the

wizard.

 Page 13 of 46 “Rational Support Whitepaper”

1.4.3 Shapes Tab

The elements in this table correspond to the checked elements in the Elements

tab, with two exceptions which will be explained shortly. All the checkboxes are

unchecked by default, and this is for a good reason.

Figure. The Shapes tab.

When this is the case, the default UML shape notation is used: the reason is that

shape customization is for advanced users. It is not possible to reasonably guess

what type of custom shape is desired. Therefore, when generating custom

shapes for non-relationship edit parts, a simple edit part, figure, and view in the

shape of a standard rectangle is generated. For relationship edit parts, code for a

simple connector and label are generated. It is up to the toolsmith to add

compartments to it or perform additional customization.

Most of the time, the default edit part will meet the requirements, because the

default edit part can easily display a custom graphic, such as the stereotype icon.

But if you want custom compartments or other special shapes, you can check the

checkboxes to generate the custom edit parts. You can then edit the generated

code later on.

Stereotype associations and metaclass associations are never displayed in this

table, even when the corresponding element has been checked in the Elements

tab. A custom shape is generated automatically if the corresponding element has

been checked in the Elements tab.

 Page 14 of 46 “Rational Support Whitepaper”

2 The generated plug-in
In version 7.0.5, the result of completing the wizard was your profile would be

copied over, the source code would be generated if you checked the option, and a

couple of models based on GMF code generation models would be generated. In

7.5, the Generate a tooling model option will generate a tooling model in the

new plug-in. Rather than GMF tooling-based models being generated, this new

version generates a single standard UML model with the emx extension. The

DSLToolProfile – that is, the Profile Tooling Profile – has been applied to it.

Figure. The two models in the Project Explorer.

If you look at the newly created project in the Project Explorer, you will see two

models. The model residing in the project’s models folder is the tooling model,

while the model in the templates folder is for a template. The tooling model

contains the settings that will describe how the plug-in will be generated. The

template model will be used by the New Model Wizard when the tooling is

deployed. So for example, if you want your template to have a particular

capability, you would open that model, set the capability, and save it.

Alternatively, if you wanted the user’s model to contain a few default elements,

you could add them to the template model and save it.

Tip: You can differentiate between the two models immediately because the

template model has the suffix Model (e.g. CSRSystemModel) and the profile

tooling model does not (e.g. CSRSystem).

 Page 15 of 46 “Rational Support Whitepaper”

3 The tooling model
To get an overview of the tooling that would be generated, you can either expand

the tooling model in the Project Explorer and have a look at the elements in the

model or see a visual representation through the use of diagrams. Because the

generated tooling model is a standard UML model, you can add diagrams to it.

To see a visual representation of the types of tooling that will be generated,

perform the following steps:

1. Right click on the tooling model from the Project Explorer.

2. From the context menu, choose Add Diagram, Freeform Diagram.

3. Drag and drop the tooling model from the Project Explorer onto the

diagram surface.

4. Right click on the model in the diagram surface.

5. From the context menu, choose Filters, Show Related Elements….

6. If necessary, press the Details button to expand the dialog.

7. Choose to show the owned elements of the model.

8. Press the OK button.

Figure. The typical results of Show Related Elements for a tooling model.

Let’s go through the elements of the diagram. In addition to the main tooling

model, you will see some stereotyped classes and some packages. A separate

package is generated for each type of tooling. In general, settings are adjusted

in two ways:

1. by renaming the name of the element;

2. by modifying the properties of the element from the Properties view.

 Page 16 of 46 “Rational Support Whitepaper”

The tooling model’s properties contain wide-ranging settings that affect various

aspects of your tooling. The stereotyped classes are used to control aspects of

the plugin.xml that will be generated, while the packages loosely correspond to

actual Java code that will be generated.

 Page 17 of 46 “Rational Support Whitepaper”

Customizing the tooling

3.1 The tooling model

The tooling model includes properties such as the Java class names for the

providers, the details about your profile, the plug-in project name, and the

application name.

Figure. Showing the properties of the tooling model.

If you are familiar with GMF, you will find that the properties used to define the

names of the generated classes are self-explanatory. For more information,

please refer to the Resources section for GMF examples.

Here are some properties which may require clarification.

applicationName: This is typically the name of the domain for which you are

generating tooling. By default, it is the same as your profile’s name. It is a good

idea to give your profile a meaningful name before generating the tooling!

deploymentFolder: If you are not using a deployed profile, this is the folder

where your profile has been copied to. By default, the value is profiles. Although

it is possible to change the value, it is general convention to leave the deployed

profile in a folder called profiles. This value has no meaning when you are

generating tooling for a deployed profile.

 Page 18 of 46 “Rational Support Whitepaper”

rsmVersion: This is the version of Rational Software Modeler (or Rational

Software Architect) that you are targeting: that is, the version of the software in

which you intend your tooling to be deployed.

Tip: If you have generated tooling and verified that it works, yet the domain

modeler asserts that it does not work for them, please verify the rsmVersion

property. Different code is generated based on what the rsmVersion is.

3.2 The Class stereotyped as Profile -

If you are deploying the profile in your plugin, this class controls settings for the

profile for which tooling is to be generated. When profiles are registered as

deployed profiles, you can specify its id (a unique identifier), whether or not the

profile is required, and whether or not it is visible in the UI. If a profile is

required, all models created using the application’s UI will have this profile

applied automatically. If a profile is visible, it will be shown to the user in the

application UI, such in the dialog where you chose the profile to generate tooling.

The profile tooling wizard will use default settings: that is, the profile is not

required to be applied and is visible in the UI.

Note: It is strongly recommended that the required flag is left at its default value

of false. Unless there is a very good reason, a profile should not be applied by

default to every model that is created!

To modify these settings, show the Properties view for the element and activate

the Profile property tab.

If you are using a using a deployed profile, then this setting has no meaning

(because the generated plug-in will not contain duplicate XML to redefine the

already-deployed profile). In that case, you will have to accept with the original

settings used to deploy the profile.

3.3 The Class stereotyped as Pathmap -

The recommended way of deploying a profile is by using a pathmap. If you are

deploying a profile in your generated plug-in, it controls the directory to your

profile. In the same manner as the settings for the class stereotyped as Profile, if

you are generating tooling for a profile that is already deployed, there is no need

to modify this.

To modify this directory location, show the Properties view for the element and

activate the PathMap property tab.

3.4 Class stereotyped as Activity -

Activities are used to control UI reduction – that is, minimizing irrelevant UI from

the domain modeler’s environment. For example, you may not want the New

Model Wizard to show your model template or you may not want the palette to

contain drawers and tools for your domain unless a certain activity is enabled.

Activities are bound to a unique identifier. Normally, you can leave this identifier

at its default value, unless you wish to change it so it corresponds to an activity

 Page 19 of 46 “Rational Support Whitepaper”

ID used elsewhere. You are also able to set a textual description of the activity

ID.

To modify these settings, show the Properties view for the element and activate

the Activity property tab.

3.5 Element Types package

This package contains classes that correspond to the elements that you have

chosen to generate tooling for.

The classes in the Element Types package may be stereotyped as one of the

following:

 StereotypeSpecializationElementType: These represent stereotyped

elements with a metaclass extension to a metaclass that is not a

relationship.

 StereotypeLinkSpecializationElementType: These represent

stereotyped elements with a metaclass extension to a metaclass that is a

relationship.

 LinkSpecializationElementType: These represent elements derived

from stereotype associations.

 MetaclassLinkSpecializationElementType: These represent elements

derived from metaclass associations.

3.6 Menus package

This package contains classes used to define the elements that can be created

using the context menu. There must be a corresponding element defined in the

Element Types package. It is only possible to create elements that are not

relationships from a context menu (i.e. the corresponding element must be

stereotyped as StereotypeSpecializationElementType).

Figure. The Add context menu.

 Page 20 of 46 “Rational Support Whitepaper”

The figure above illustrates how the context menus may be customized. If no

customizations were performed, all the menu items would appear in the same

Add CSRSystem flyout menu (submenu). To make the menu less cluttered,

certain menu actions have been separated into an Add Baggage Elements

flyout menu, and the <BaggageQuery> UseCase action has been separated

into its own group.

The classes in the Menus package may be stereotyped as one of the following:

 ContextMenu: This is the root class for the popup menu definitions. This

can be left alone.

 FlyoutMenu: This defines a submenu for adding the elements from your

profile’s domain to the model, much like the standard Add UML submenu

available from the context menu. A typical customization is changing the

name of the submenu. To do that, simply change the name of the class in

the Properties view or rename the class from the Project Explorer.

This name will be added to a properties file in order to support localization

when the code is generated.

 MenuGroup: This is used to group the elements in the FlyoutMenu

submenu. Elements in different groups are divided by a separator. By

default, all elements for which you have chosen to generate tooling will be

added into a single menu group with a default id of defaultGroup. If you

wish to group the elements logically, you can do so by creating additional

groups. For example, you may want to group all the actions used to

create non-relationship domain elements together and have them separate

from the actions used to create relationship domain elements.

 MenuCreationAction: This creates the specified element type. The

element type should be defined in the Element Types package discussed

above.

Several of the elements pertaining to the menu and the palette support custom

icons. However, it is not necessary to specify an icon for an icon to actually

appear. If an icon is not specified, the stereotype icon will be used if it is defined.

If a stereotype icon is not defined, the corresponding UML metaclass’ icon will be

used instead.

To summarize:

 a class stereotyped as ContextMenu references classes stereotyped as

FlyoutMenu;

 a FlyoutMenu references classes stereotyped as MenuGroup;

 a class stereotyped as MenuGroup references classes stereotyped as

MenuCreationAction and MenuSeparator.

Tip: In the summary above, observe the word “references.” This is not the same

as containment! Simply adding a class stereotyped as MenuCreationAction along

the other ones inside the Actions package is not sufficient. You will need to

access the properties of the class stereotyped as MenuGroup, and then add the

new action in the children properties. Moreover, if you choose to copy and paste,

please be sure to change the id property of your item! Multiple items having the

same identifier will confuse the code generator.

 Page 21 of 46 “Rational Support Whitepaper”

3.7 Palettes package

This package contains classes used to define the elements that can be created

using the diagram palette. In version 7.5 of the product, if you have chosen to

generate tooling for both menu items and palette entries, the palette will contain

entries for relationship elements in addition to all the menu actions generated for

the context menu (non-relationship elements). There must be a corresponding

element defined in the Element Types package.

Figure. The diagram palette.

The figure above gives an example of stacks in the palette. The <Requires>

Dependency element and the <Complaint> Association element are in

stacks.

The classes in the Palette package may be stereotyped as one of the following:

 Palette: A palette can contain multiple drawers. For example, the tooling

may be grouped by actions performed by different types of customer

service representatives. To add an additional group:

1. Create a new class stereotyped as PaletteDrawer.

2. Show the Properties view for the class stereotyped as Palette and

activate the Palette property tab.

3. Locate the children property and add the new class stereotyped as

PaletteDrawer.

 PaletteDrawer: By default, all items are added into the same palette

drawer, and this palette drawer’s title is set to the profile’s name. To

rename a palette drawer, simply change the name of the class in the

Properties view or rename it from the Project Explorer. The palette

drawer’s title will be added to a .properties file in order to support

 Page 22 of 46 “Rational Support Whitepaper”

localization when the code is generated. The PaletteDrawer tab in the

Properties view also allows you to adjust other settings, including the

initial state of the palette drawer (INITIAL_STATE_CLOSED,

INITIAL_STATE_OPEN, and INITIAL_STATE_PINNED_OPEN).

 PaletteCreationToolEntry: Each class stereotyped as a

PaletteCreationToolEntry corresponds to an item in the palette drawer in

your generated tooling (assuming it is contained by a class stereotyped as

PaletteDrawer). In a similar way as the MenuCreationAction, you can

choose the element type to be created by the tool. The element type

should be defined in the ElementTypes package discussed above.

 PaletteStack. A palette stack groups multiple palette tools together so

they occupy less space on the palette. To avoid confusing the end user of

the tooling, stacked palette tools should be related in some logical

manner. Recall that when generating the tooling, the Elements tab in the

Advanced Tooling Model Generation Properties dialog of the Profile

Tooling Plug-in Project wizard added concrete subtypes. By default, a

stack groups the elements created off the concrete subtypes along with

the main type defined in the profile (assuming it is concrete). If the

intention is that certain domain elements will be created frequently, you

can “unstack” them by removing elements from a stack and adding them

directly to the palette drawer. To “unstack” an element:

1. Show the Properties view for the class stereotyped as PaletteStack

and activate the PaletteStack property tab.

2. Locate the children property and remove the class stereotyped as

PaletteCreationToolEntry.

3. Show the Properties view for the class stereotyped as PaletteDrawer

and activate the PaletteDrawer property tab.

4. Locate the children property and add the class you removed in Step 2.

To summarize:

 a class stereotyped as Palette references classes stereotyped as

PaletteDrawer;

 a class stereotyped as PaletteDrawer references classes stereotyped as

PaletteCreationToolEntry or PaletteStack;

 a class stereotyped as PaletteStack references classes stereotyped as

PaletteCreationToolEntry.

3.8 Shapes

A Shapes package is generated regardless of whether you decide to create

custom shapes or reuse the default UML shapes. That is because we create

classes to represent default edit parts which can be customized by the person

generating the tooling. For more information on programmatically customizing

the diagram shapes, please see “Product help – Customizing Diagram Shapes” in

the Resources section.

3.8.1 Using default UML notation

By default, the default UML notation is used. If you have not changed these

settings, your tooling model will contain classes stereotyped as DefaultEditPart,

Style, and StyleFeatureValue. And, when the code is generated, only Java

 Page 23 of 46 “Rational Support Whitepaper”

classes that implement IViewCustomizer are generated in the viewFactories

package.

Figure. The shapes in this diagram use the default UML notation.

Note: The customizations made by the view customizer will override the defaults

specified in Windows, Preferences, Modeling, Appearance, Shapes. You

can, however set them back using the Appearance tab in the Properties view.

When using default UML notation, the classes in the Shapes package may be

stereotyped as one of the following:

 DefaultEditPart: As in the MenuCreationAction or

PaletteCreationToolEntry, the DefaultEditPart is associated with an

element type. In addition to specifying the element type corresponding to

this edit part, you can set the style or the view customizer’s Java class

name.

A view customizer is a concept introduced by Profile Tooling. It is used to

perform customization on views after they have been created. The view

customizer (IViewCustomizer) is defined in the generated view provider.

View customizers are invoked by the view provider to customize the view

in the createNode() and createEdge() methods after the GMF ViewService

has returned a Node or an Edge.

 Style: The style to be modified. By default, the style class is

UMLShapeStyle and it brings together the GMF styles FontStyle,

UMLListStyle, FillStyle, LineStyle and the UML styles UMLNameStyle,

UMLParentStyle, UMLStereotypeStyle. For full details, please see the

references section. The UML styles are defined as public API in

 Page 24 of 46 “Rational Support Whitepaper”

com.ibm.xtools.umlnotation. Please see “Product help –

com.ibm.xtools.umlnotation” in the Resources section.

 StyleFeatureValue: The generated view customizer sets the

UMLStereotypeStyle to Image. Other possible values for UML stereotype

style are None, Text, Icon, and Label.

Note: If you have generated elements for stereotype associations or metaclass

associations, a custom shape will be generated, as described in the next section.

3.8.2 Generating custom shapes

If you have chosen to generate custom shapes, your tooling model will contain

classes stereotyped as NodeEditPart (non-relationship elements) and LinkEditPart

(relationship elements). NodeEditPart contains a TextEditPart and a Figure, while

a LinkEditPart contains a LabelEditPart further containing a TextEditPart. When

code is generated, no view customizers will be generated. Instead, view factories

will be generated in the viewFactories package, and corresponding edit parts and

figures are generated in the editParts and figures packages.

Figure. The shapes in this diagram use custom UML notation.

When generating custom shapes for non-relationship elements, the classes in the

Shapes package may be stereotyped as one of the following:

 NodeEditPart: The NodeEditPart is the basic edit part describing non-

relationship elements. Of note, you can customize the names of the

generated Java classes and the styles.

 TextEditPart: This corresponds to the text box that appears inside of the

edit part.

 Page 25 of 46 “Rational Support Whitepaper”

 Figure: This corresponds to the figure for the edit part.

When generating custom shapes for relationship elements, the classes in the

Shapes package may be stereotyped as one of the following:

 LinkEditPart: The LinkEditPart is the basic edit part describing

relationship elements. Of note, you can customize the names of the

generated Java classes and the styles.

 LabelEditPart: This corresponds to the edit part that contains the

TextEditPart. Of note, you can customize the anchor location.

 TextEditPart: As for non-relationship elements, this corresponds to the

text box that appears inside of the edit part.

To summarize:

 a class stereotyped as DefaultEditPart is used when default UML notation

is to be used;

 a class stereotyped as NodeEditPart contains a class stereotyped as

TextEditPart and a class stereotyped as Figure;

 a class stereotyped as LinkEditPart contains a class stereotyped as

LabelEditPart;

 a class stereotyped as LabelEditPart contains a class stereotyped as

TextEditPart;

 a class stereotyped as Style contains a class stereotyped as

StyleFeatureValue.

Note: There is no Figure generated for relationship elements because the

generated edit parts extend GMF’s ConnectionNodeEditPart which already defines

a default figure. However, the non-relationship elements extend GMF’s

ShapeNodeEditPart, which does not define the default figure.

 Page 26 of 46 “Rational Support Whitepaper”

3.9 Properties

In version 7.5, it is possible to generate a custom tab in the Properties view

corresponding to your particular element. By default, this generated tab contains

the stereotype specific properties that are normally shown in the Advanced

properties tab and in the Stereotype Properties section of the Stereotypes

properties tab. Please see “Eclipse tabbed properties” in the resources section for

more details on how to write code to expand on the generated properties.

Figure. The Properties for the <<Customer>> actor are shown.

The classes in the Properties package may be stereotyped as one of the

following:

 PropertyCategory: A PropertyCategory references the classes

stereotyped as PropertyTab that custom properties will be generated for.

 PropertyTab: This corresponds to the custom property tab.

 PropertySection: A section in the tab. Each section references an

element type. By default, one section is generated per tab.

To summarize:

 a class stereotyped as PropertyCategory references classes stereotyped as

PropertyTab;

 a class stereotyped as PropertyTab references classes stereotyped as

PropertySection.

 Page 27 of 46 “Rational Support Whitepaper”

4 Wizards
The classes in the Wizards package provides the ability to customize the

contributions to the New Model Wizard.

Figure. The New Model Wizard.

The classes in the Wizards package may be stereotyped as one of the following:

 TemplateContribution: A TemplateContribution references classes

stereotyped as Activity, TemplateCategory, and Template. You can also

specify the template directory and the generated Java class name of the

template handler.

 Activity: We discussed the use of activities earlier, and how to customize

the activity that controls the tooling. By default a separate activity is

generated for the wizards.

 Template: This allows customization of the template description, template

id, model name, and template file.

 TemplateCategory: Here it is possible to set the ID of the category the

template should appear in the New Model Wizard.

 Page 28 of 46 “Rational Support Whitepaper”

5 Dynamic Profile Tooling diagrams
Apart from using Show Related Elements to visualize the related tooling elements

at a high level, you can use dynamic Profile Tooling diagrams to show the

relationships of a certain tooling class.

Figure. A dynamic PaletteDrawer diagram. Notice the button to refresh the

diagram in the top right corner.

Note: Dynamic Profile Tooling diagrams are supported for most classes with a

Profile Tooling stereotype applied, but not packages. You can easily use Show

Related Elements to visualize the contents of packages or simply examine the

containment hierarchy in the Project Explorer.

To create a Profile Tooling diagram:

1. Right click on the element which has an applicable Profile Tooling

stereotype applied (such as PaletteDrawer).

2. From the context menu, choose Add Diagram, Add

[ProfileToolingStereotype] Diagram, where [ProfileToolingStereotype]

is a profile tooling stereotype, such as PaletteDrawer. A dynamic palette

drawer diagram shows how the elements in the palette are related.

Because this is a query based diagram, it will update based on the elements in

the tooling model. To force a manual refresh, press the Refresh query results

on the diagram button.

Tip: The Refresh query results on the diagram button may be hidden in the

toolbar area, so you may have to move the toolbars around to see it.

 Page 29 of 46 “Rational Support Whitepaper”

6 Change management
Recall the Profile Tooling Plug-in Project wizard gave the options to Generate

a tooling model and to Generate tooling code. Both the tooling model and

the tooling code must be kept in sync with changes to either the profile or the

tooling.

6.1 Responding to changes in the profile

If you have made changes to a profile not deployed in the workspace, you can

regenerate the tooling model to update the tooling model with the changes in

your profile. For example, if you add or remove a Stereotype with a metaclass

extension to a concrete subtype, you may want to add or remove the

corresponding element to or from your tooling.

To update your tooling model:

1. Right click on the model in the Project Explorer.

2. From the context menu, choose Save.

3. Right click on the tooling model again.

4. From the context menu, choose Update Tooling Model.

5. A dialog appears informing you that the changes will be merged into the

model. Press the OK button to proceed.

6. A dialog allowing you to perform a visual merge appears. The left side of

the dialog represents the tooling model generated from the latest version

of the profile. The right side of the dialog represents your existing tooling

model. Check the checkboxes of the changes you wish to accept and

press the OK button to update your tooling model.

Note: Be careful not to accidentally accept the changes to delete your

existing diagrams. Since no diagrams are generated by default in the

tooling model, the lack of a diagram is considered as a change.

Alternatively:

1. Right click on the profile in the Project Explorer.

Note: Be sure to right click the instance of the profile that was copied into

the generated plug-in. If you have made changes to some other instance

of the profile, you will need to replace the profile copied into the generated

plug-in.

2. From the context menu, choose Generate Profile Tooling Model.

3. Continue through Steps 3 and 4 as shown above.

 Page 30 of 46 “Rational Support Whitepaper”

Figure. A visual merge.

6.2 Updating tooling model generation properties

When you used the Profile Tooling Plug-in Wizard, you were given the option

to choose the type of tooling to generate and the elements for which tooling

should be generated. You can adjust those settings without editing the tooling

model.

To update the tooling model generation properties:

1. Right click on the tooling model in the Project Explorer.

2. From the context menu, choose Properties.

3. On the left side of the dialog, choose Tooling Model Generation.

4. You are presented with the same properties shown in the Advanced

Tooling Model Generation Properties dialog. The settings you

specified previously are remembered, so you do not have to start from

scratch. Make the desired changes and press the OK button.

5. At this point, your tooling model has not been updated. Now, save your

model and repeat the process to update your tooling model described in

the Responding to changes in the profile section.

 Page 31 of 46 “Rational Support Whitepaper”

Figure. The Tooling Model Generation Properties dialog.

6.3 Generating code from the tooling model

If Generate tooling code was not checked, or if made changes to the tooling

model after generating the tooling code, you will need to (re)generate the tooling

code. Tooling code is not automatically regenerated after updating your tooling

model.

To regenerate the tooling code:

1. Right click on the tooling model.

2. From the context menu, choose Save.

3. Right click on the tooling model again.

4. From the context menu, choose Generate Tooling Code.

When the code is regenerated, code is merged as much as possible. To enable

the code to merge successfully, the generated tooling code contains the

@generated tag in the Javadoc of the methods. If you have made changes to the

generated code, and you wish that those changes will not be overwritten during

code regeneration, change the @generated tag to @generated NOT.

Second, the code regeneration is as non-destructive as possible. If an element

type has been removed from your tooling model (either by you or because the

tooling model was regenerated to be synchronized with the profile), the

previously generated Java file will not be deleted. You should delete those files

manually after reviewing them.

 Page 32 of 46 “Rational Support Whitepaper”

Please be aware that non-Java files are not merged upon regeneration: they are

overwritten. If you had changes that were overwritten upon regeneration, they

can be restored from Local History. To restore your changes from Local History:

1. Right click on the file in the Project Explorer.

2. From the context menu, choose Replace With, Previous from Local

History.

Tip: If you totally mess up a Java file, you can delete it and regenerate the

tooling code. Starting over from scratch can be much simpler and less time-

consuming than trying to fix problems in the code.

 Page 33 of 46 “Rational Support Whitepaper”

7 Running the Generated Plug-in
The generated plug-in can be tested in your environment prior to deployment. To

do this, launch a new instance of the runtime workbench.

7.1 Launching a new instance of the runtime workbench

To perform a quick test in your environment:

1. Switch to the Java perspective using the Open Perspective button at the

top right of the toolbar.

2. Open the Debug Configurations dialog by choosing Debug, Debug

Configurations…..

3. Double-click Eclipse Application on the left side to create a new Eclipse

Application configuration.

4. Type a name for your configuration.

5. In the Main tab, you can choose a new location (such as C:\my-runtime-

workspace).

6. For Program to Run, leave the default settings of

com.ibm.rational.rxx.product.v75.ide

7. Press the Debug button.

Figure. The Debug Configurations dialog.

Note: Under the Plug-ins tab, ensure that Launch with is set to all workspace

and enabled target plug-ins. If you must choose plug-ins selected below

 Page 34 of 46 “Rational Support Whitepaper”

only, ensure that the entry for the plug-in corresponding to the tooling is

checked.

Note: If you plan to modify the generated code, it is a good idea to include -ea in

the VM Arguments box under the Arguments tab. Some of the generated code

includes assertions, so you may find that enabling the assertions will help you

track down programming errors faster.

7.2 The New Model Wizard

After you have launched a runtime instance, you can create a new model which

will allow you to model using the generated tooling.

Note: This only applies if you have chosen to generate tooling for Wizards in the

Tooling Model Generation properties.

To create a new model:

1. Choose File, New, Project….

2. Expand the Modeling category and choose New Model Project.

3. Check the Show all templates check box to show the template

associated with the tooling for your profile.

4. Select that template, and then press the Next button.

5. Review the capabilities displayed in the Model Capabilities wizard page.

If you selected any capabilities in your template model, they will be

checked here.

6. Press the Finish button to create the new model. If you added any

elements to your template model, they will be in this newly created model.

Figure. The Model Capabilities page in the New Model Wizard.

 Page 35 of 46 “Rational Support Whitepaper”

The next time you use the wizard, you will see the template even when the Show

all templates check box is unchecked. This is because the corresponding

capability has been enabled. To enable or disable capabilities manually:

1. Choose Window, Preferences.

2. Choose Capabilities from the left side.

3. Press the Advanced… button.

4. Locate the capability corresponding to your profile and expand it. The

Core subcategory controls the wizard, while the Tooling subcategory

controls the tooling in the diagram. Check or clear the checkboxes to

enable or disable the capabilities as appropriate.

Figure. The Advanced Capabilities Settings from the Preferences dialog.

Observe that tooling corresponding to the profile elements appears in the palette.

Bring up the context menu on the diagram surface, and observe there are now

menu items that correspond to the profile elements. The palette entries

corresponding to connectors all follow live constraints. That is, they can be

connected only in a way that follows UML rules and the tooling's rules. Thus, you

would not be able to:

 add an unsupported connector to a node (such as an implements

connector to a UML package);

 create a stereotype association connector between objects that do not

have the expected stereotype applied;

 Page 36 of 46 “Rational Support Whitepaper”

 create connectors in the wrong direction.

Similarly, it is not possible to add an element onto a diagram that does not

support it. For example, the tooling would prohibit adding a lifeline onto a class

diagram.

7.3 Enabling additional capabilities

By default, when the domain modeler creates a model from a profile tooling

template model, the tooling is restricted to the generated tooling. The modeler

can see additional tooling by performing one of the following tasks.

Figure. The Capabilities tab in the Properties view.

The first method involves disabling the customization of capabilities:

1. Click on the model in the Project Explorer.

2. Activate the Properties view and choose the Capabilities tab.

3. Clear the checkbox to Customize UI visibility for this model by

selecting capabilities below.

4. The capabilities will be as defined in the preferences, which we described

how to customize earlier.

The second method involves directly defining the capabilities in the model:

1. Click on the model in the Project Explorer.

2. Activate the Properties view and choose the Capabilities tab.

3. Verify that the checkbox to Customize UI visibility for this model by

selecting capabilities below is checked.

4. Locate the UML Element Building Blocks capability (and optionally the

UML Diagram Building Blocks capability).

5. Check the checkboxes next to the desired UML elements (and optionally

UML diagrams).

 Page 37 of 46 “Rational Support Whitepaper”

Note: The capabilities may also be customized in the Model Capabilities page

of the New Model Wizard.

Figure. Modeling with both plain UML elements and domain specific elements.

7.4 Working with existing models

If the domain modeler is working with an existing model, the tooling may not

show up unless the capabilities settings are adjusted. The capabilities settings

can be adjusted as described above. The generated profile tooling code will apply

the profile automatically to the model when an attempt is made to add a domain

element onto the diagram using the tooling. However, a profile can also be

applied manually.

 Page 38 of 46 “Rational Support Whitepaper”

Figure. The Details tab in the Model Editor.

To manually apply a profile:

1. Double click a model to open the Model Editor.

2. In the Model Editor, select the Details tab and click the Add… button in

the Applied Profiles section. Since the Profile Tooling wizard deploys the

profile into the generated plug-in, the profile corresponding to the

generated tooling shows in the list of deployed profiles.

3. Select the profile, and then click OK.

Even though the generated tooling applies the profile automatically upon adding a

domain element, deleting the element will not automatically unapply the profile.

To remove a profile application:

1. Double click a model to open the Model Editor.

2. In the Model Editor, select the Details tab and click the Remove button

in the Applied Profiles section.

Note: The above steps can also be done in the Properties view for the model

from the Profiles property tab.

 Page 39 of 46 “Rational Support Whitepaper”

8 Deploying the tooling
When you are satisfied with your tooling, you are ready to deploy it to domain

modelers.

8.1 Deploying tooling the easy way

The easiest way for the toolsmith is to distribute the generated project to the

domain modeler. The modeler must import the project into the workspace by

using File, Import, Existing Projects into Workspace, and then launch a new

runtime workbench (as we did to test the tooling). This method is the worst of all:

one missing file and the plug-in ceases to work. Furthermore, requiring another

instance of the runtime workbench increases memory consumption. Therefore,

this is not a recommended approach. This method should only really be used

when you are debugging and developing your plug-in.

8.2 Deploying tooling as a JAR file

A more reasonable step is to generate a Java Archive (JAR) file for the tooling

project. The JAR file includes the generated code in its compiled form. To deploy

tooling as a JAR file:

1. Right click the generated project that contains your tooling from the

Package Explorer.

2. From the context menu, choose Export, Plug-in Development,

Deployable plug-ins and fragments.

3. Ensure that only the required plug-in is checked and, within the

Destination tab, enter the directory destination for the JAR output.

4. (Optional) In the Options tab, you may find it helpful to check the

Include source code option if you're planning on customizing the code.

Doing so will make it easier to debug.

5. Press the Finish button.

Tip: If this fails, remove unnecessary plug-ins from your environment if you

added any. Likely, another builder is trying to contribute and it is failing, causing

the entire process of generating the jar to fail.

 Page 40 of 46 “Rational Support Whitepaper”

Figure. The Export wizard.

8.2.1 Importing the JAR

There are several ways to go from here. A possible way is to give the modeler

your jar. The modeler imports it into the workspace using File, Import, Plug-

ins and Fragments, then launches another instance of the workspace. Again,

this has memory implications.

8.2.2 Including the JAR in the plugins directory

A far better way is to the copy the jar file into the product install’s plugins

directory. If the application is installed in the default location, here is where to

find the directory, depending on which operating system you are using:

Microsoft® Windows®: C:\Program Files\IBM\SDP\plugins

Linux®: /home/<username>/eclipse/plugins

If the file is copied as part of the product's installation and the generated tooling

is not going to be updated, this is a relatively easy approach. The generated

tooling will be available the next time the application is launched.

 Page 41 of 46 “Rational Support Whitepaper”

There may be no plan to update the generated tooling, but assuming that there

will be no updates is likely unrealistic. What you can do, however, is anticipate

the updates and assign versions to your plug-in. By default, the plug-in version

is taken from the profile's version. Therefore, if you make changes to your

tooling without making changes to the profile, the version number will remain the

same. You can overcome this problem by manually updating the version of your

plug-in before generating the JAR file. To do this:

Double click the manifest.mf file in the generated plug-in project to open it.

On the Overview page, increment the version in the General Information

section (see figure).

Figure. The Manifest Editor.

Now, the next time the tooling is updated, it just needs to be copied into the

correct location, and the application needs to be relaunched. Updating the version

of the manifest prevents naming conflicts when the JAR file is copied into the

plugins folder.

 Page 42 of 46 “Rational Support Whitepaper”

8.3 Deploying tooling using an update site

The final method is the standard Eclipse approach.

To create an update site and publish your plug-in on the site

Select File, New, Other, Plug-in Development, Update Site Project, and

follow the prompts.

This step is far more involved. See the Resources section.

Troubleshooting tip:

If the JAR file is copied into the plug-in folder of the installation and the tooling

fails to appear, first verify that the correct version of the plug-in is recognized.

To do so:

1. Select Help, About Eclipse SDK.

2. Click Plug-in Details, and verify that the generated plug-in is in the list.

3. If the plug-in is not in the list, restart the application with the -clean

parameter.

4. If the plug-in is in the list, check the Error Log view by selecting

Window, Show View, Other, PDE Runtime, Error Log, and checking

for errors that pertain to the tooling plug-in.

Table 1 summarizes the methods for deploying your tooling plug-in.

Figure. Plugins.

 Page 43 of 46 “Rational Support Whitepaper”

Table 1. Deployment methods for your tooling plug-in.

Manual deployment of the

plug-in project

 Very easy for the

tooling developer

 User has easy access

to source

 Too easy to miss a

file, causing the

tooling to not

function properly

 Process to update

the tooling may

confuse the end user

 Requires end user to

launch another

instance of the

workspace (which

requires more

memory)

 User has easy access

to source and easy

to modify, thus

tooling could be out

of sync on multiple

users' machines

Manual deployment of the

JAR file

 Very easy for the

tooling developer

 User has easy access

to source code if the

source is included in

JAR file

 Requires end user to

launch another

instance of the

workspace (which

uses more memory)

 Process to update

the tooling may

confuse the end user

 User has easy access

to source code if the

source is included in

the JAR file and easy

to modify, so tooling

could be out of sync

on multiple users'

machines

Copy JAR file into the

plug-in folder of the

installation

(recommended)

 Very easy Updates to the

tooling require

copying the plug-in

into the proper folder

again

Use update site Standard Eclipse way

of updating

 End user can get

updates for the

profile tooling easily

 More work for the

profile developer to

maintain the site

 Page 44 of 46 “Rational Support Whitepaper”

9 Upgrading from earlier versions
The GMF-based tooling models from previous versions of the product must be

upgraded to standard .emx Modeler models in order to be used in version 7.5 of

the product. To upgrade the model:

1. Locate the .epxgen file from the Project Explorer and double click on it.

2. An editor will open and prompt you to migrate the models.

3. Press the Migrate button.

Note: None of the other models (tool, graph, and map models) will open. You

must upgrade the .epxgen file to a tooling model in the new format.

Figure. The Profile Tooling model migration editor.

 Page 45 of 46 “Rational Support Whitepaper”

10 Conclusion
With Profile Tooling, it is possible to become a toolsmith and quickly generate

specialized tooling and shapes to allow true custom domain modeling. This

tooling can be deployed to end users – domain modelers who might be familiar

with a particular domain but unfamiliar with UML modeling. The capabilities

settings work in conjunction with this feature to turn off the unnecessary tooling,

such as UML palette entries and menu items, thereby simplifying the domain

modeler’s workflows.

Profile Tooling enables domain specific modeling by generating custom tooling

and custom shapes from an existing UML profile. The new features were intended

to enhance the workflow so that working custom tooling can be generated quicker

than before. Using the profile tooling feature, you can automatically generate

custom code to provide a specialized diagram editor which only models elements

from a particular domain defined in a UML profile. In addition, the elements can

be shown using notation specific to the particular domain. Profile Tooling

drastically reduces the time it would otherwise take to write the editor and shape

code by hand, and eliminates the need to learn GMF, GEF, and Eclipse

development in depth to add your custom palette, menu, wizard, and properties

contributions.

 Page 46 of 46 “Rational Support Whitepaper”

11 Acknowledgements
The author expresses his thanks to Anthony Hunter, Dusko Misic, Michael Hanner,

and Michelle Crane for reviewing this article.

12 About the author

 Wayne Diu is a software developer at IBM Rational. He worked on the

original implementation of the Profile Tooling feature to allow custom domain

modeling. Prior to that, he developed several features for the Rational Modeling

Platform, such as the Browse Diagram infrastructure, and he was one of the

developers responsible for the platformization of the metamodel integration

framework. Wayne is now on the Modeler team, where he works on a diverse

collection of features including those involving the Project Explorer, refactoring

support, and UML modeling.

13 Resources
 GMF Resources

 GMF Runtime Programmer’s Guide

 Deploying the plugin in an Eclipse style update site

 Eclipse Tabbed Properties View

 Extending UML Modeler

 Product help – Customizing diagram shapes

Extending product function > Extending the Rational Modeling

Environment > Rational Modeling Platform Developer’s Guide >

Programmer’s Guide > Customizing Diagrams > Customizing

Diagram Shapes.

 Product help – com.ibm.xtools.umlnotation

Extending product function > Extending the Rational Modeling

Environment > Rational Modeling Platform Developer’s Guide >

Reference > API Reference > UML Modeling Layer >

com.ibm.xtools.umlnotation.

 Authoring UML Profiles: Part 1

 Authoring UML Profiles: Part 2

 Custom domain modeling with UML Profiles in version 7.0.5: Part 1

 Custom domain modeling with UML Profiles in version 7.0.5: Part 2

http://www.eclipse.org/modeling/gmf/
http://help.eclipse.org/help32/index.jsp?topic=/org.eclipse.gmf.doc/prog-guide/runtime/index.html
http://www.eclipse.org/articles/Article-Update/keeping-up-to-date.html
http://www.eclipse.org/articles/Article-Tabbed-Properties/tabbed_properties_view.html
http://publib.boulder.ibm.com/infocenter/rsmhelp/v7r5m0/topic/com.ibm.xtools.extend.overview.doc/topics/c_umlmodeler.html
http://www.ibm.com/developerworks/rational/library/08/0429_misic1/index.html?S_TACT=105AGX15&S_CMP=LP
http://www.ibm.com/developerworks/rational/library/08/0429_misic2/index.html?S_TACT=105AGX15&S_CMP=LP
http://www.ibm.com/developerworks/rational/library/08/0506_diu1/index.html?S_TACT=105AGX15&S_CMP=EDU
http://www.ibm.com/developerworks/rational/library/08/0429_misic2/index.html?S_TACT=105AGX15&S_CMP=LP

